### S.6 CHEMISRTY HOLIDAY WORK

### REDOX REACTIONS AND CALCULATIONS

Oxidation – reduction reaction (or Redox) reactions involve electron transfer. The oxidizing agent accepts electrons and is being reduced while reducing agent losses electron and is being oxidized. Sometimes oxidizing agent is called oxidant while reducing agent is called reductant.

In working out the equation for a redox reaction, it is important to first write half equations and then add them together.

A half equation is one which involves electron.

# **Examples of half- equation reactions**

(a) (i) Iron(III) salts are reduced to iron (II) salts in presence of a reducing agent.

$$Fe^{3+}(aq) + e \longrightarrow Fe^{2+}(aq)$$

(ii) Similarly iron(II) salts are oxidized to iron(III) salts in the presence of an oxidizing agent.

$$Fe^{2+}(aq) \longrightarrow Fe^{3+}(aq) + e$$

(b) (i) When chlorine gas is an oxidizing agent and thus it is being reduced by accepting electrons

$$Cl_2(g) + 2e \longrightarrow 2Cl(aq)$$

**NB** Chlorine gas reacts with iron(II) salts but not iron(III) salts because it accepts electrons which were donated by iron(II) ions

$$2Fe^{2+}(aq) + Cl_2(g) \longrightarrow 2Fe^{3+}(aq) + 2Cl^{-}(aq)$$

This equation is an overall equations between two half equations(one oxidation half equation and the other reduction half equation)

(ii) Bromine and Iodine are oxidizing agents and therefore are reduced to bromide ions and iodide ions respectively.

$$Br_2(1) + 2e \longrightarrow 2Br^{-}(aq)$$
  
 $I_2(aq) + 2e \longrightarrow 2I^{-}(aq)$ 

(c) Sulphur dioxide and sulphite ions are reducing agents and thus are being oxidized to sulphate ions

$$SO_2(g) + 2H_2O(1) \longrightarrow SO_4^{2-}(aq) + 4H^+(aq) + 2e$$
  
 $SO_3^{2-}(aq) + H_2O(1) \longrightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e$ 

(d) Potassium manganate(VII) is an oxidizing agent . In acidic medium, manganite(VII) ions are reduced to manganese(II) ions .

$$MnO_4^-(aq) + 8H^+(aq) + 5e \longrightarrow Mn^{2+}(aq) + 4H_2O(1)$$

(e) Potassium dichromate(VI) is an oxidizing agent. In acidic medium, dichromate(VI) ions are reduced to chromium (III) ions

$$Cr_2O_7^{-2}(aq) + 14H^+(aq) + 6e \longrightarrow 2Cr^{3+}(aq) + 7H_2O(1)$$

- (f) (i) Potassium chlorate(V) is an oxidizing agent. In acidic medium, chlorate(V) ions are reduced to chloride ions  $ClO_3^{-}(aq) + 6H^{+}(aq) + 6e \longrightarrow Cl^{-}(aq) + 3H_2O(l)$ 
  - (ii) Potassium iodate(V) and potassium bromate(V) are also oxidizing agents. In acidic medium ,bromate(V) and iodate(V) ions are oxidized to bromide ions and iodide ions respectively.

$$BrO_3^-(aq) + 6H^+(aq) + 6e \longrightarrow Br^-(aq) + 3H_2O(1)$$
  
 $IO_3^-(aq) + 6H^+(aq) + 6e \longrightarrow I^-(aq) + 3H_2O(1)$ 

(g) Chloride ions, bromide ions and iodide ions can act as reducing agents and therefore are oxidized to halogen molecules.

$$2Cl^{-}(aq) \longrightarrow Cl_{2}(g) + 2e$$

$$2Br^{-}(aq) \longrightarrow Br_{2}(l) + 2e$$

$$2l^{-}(aq) \longrightarrow I_{2}(aq) + 2e$$

### Note

Chlorate(V) ions , bromate(V) ions and iodate(V) ions can oxidize iodide ions ion acidic medium to iodine and themselves are reduced to halide ions

$$YO_3^-(aq) + 6I^-(aq) + 6H^+(aq) \longrightarrow Y^-(aq) + 3I_2(aq) + 3H_2O(l)$$
  
(where Y = Cl, Br, I)

If Y = I then equation becomes

$$IO_3(aq) + 5I(aq) + 6H(aq) \longrightarrow 3I_2(aq) + 3H_2O(1)$$

(h) Thiosulphate ions are oxidized to tetra thionate ions

$$2S_2O_3^{2-}(aq) \longrightarrow S_4O_6^{2-}(aq) + 2e$$

(i) Oxalate ions are oxidized to carbon dioxide.

$$C_2O_4^{2-}(aq) \longrightarrow 2CO_2(g) + 2e$$

(j) Nitrite ions are oxidized to nitrate ions

$$NO_2^-(aq) + H_2O(l) \longrightarrow NO_3^-(aq) + 2H^+(aq) + 2e$$

(k) Bismuthate ions in acidic medium are reduced to bismuth(III) ions

$$BiO_3(aq) + 6H(aq) + 2e \longrightarrow Bi^{3+}(aq) + 3H_2O(1)$$

(l) Lead(IV) Oxide in acidic medium is reduced to lead(II) ions

$$PbO_2(s) + 4H^+(aq) + 2e \longrightarrow Pb^{2+}(aq) + 2H_2O(1)$$

- (m) Hydrogen peroxide can act as a reducing agent and as well as an oxidizing agent.
- (i) Hydrogen peroxide in acidic medium is reduced to water.

$$H_2O_2$$
 (aq) +  $2H^+$ (aq) + 2e  $\longrightarrow$   $2H_2O(1)$ 

(ii) Hydrogen peroxide in neutral medium is oxidized to oxygen

$$H_2O_2(aq) \longrightarrow O_2(g) + 2H^+(aq) + 2e$$

**Note:** When a reduction half- equation is combined with an oxidation half-equation, an overall redox equation can be written.

# For example:

1. When manganese (II) sulphate was mixed with sodium bismuthate solution in presence of concentrated nitric acid, a purple solution of manganite(VII) ions was formed. This because a mixture of sodium bismuthate and concentrated nitric acid acts as a strong oxidising agent and thus will oxidize manganese (II) ions to manganite(VII) ions.

## Half -equations

$$Mn^{2+}(aq) + 4H_2O(1) \longrightarrow MnO_4^-(aq) + 8H^+(aq) + 5e$$
 (oxidation)  
 $BiO_3^-(aq) + 6H^+(aq) + 2e \longrightarrow Bi^{3+}(aq) + 3H_2O(1)$  (reduction)

## Combining two half equations

$$2Mn^{2+}(aq) + 5BiO_3(aq) + 2H_2O(1) \longrightarrow 2MnO_4(aq) + 5Bi^{3+}(aq) + 4H^{+}(aq)$$

2. When sulphur dioxide gas was bubbled through acidified potassium manganite(VII) the purple solution turns colourless. This is because sulphur dioxide is a reducing agent and reduces manganite(VII) ions to manganses(II) ions.

## Half equations:

$$SO_2(g) + 2H_2O(l) \longrightarrow SO_4^{2-}(aq) + 4H^+(aq) + 2e$$

$$MnO_4^{-}(aq) + 8H^+(aq) + 5e \longrightarrow Mn^{2+}(aq) + 4H_2O(l)$$

# Combining two half - equations

$$2MnO_4^{-}(aq) + 5SO_2(g) + 2H_2O \longrightarrow 2Mn^{2+}(aq) + 5SO_4^{2-}(aq) + 4H^{+}(aq)$$

3. When sodium sulphite solution was added to acidified solution of potassium dichromate, orange solution turns green. This is because sulphite ions reduce dichromate ions to chromium(III) ions. Write half equations and hence write an overall redox equation for the reaction.

# **REDOX TITRATIONS**

### POTASSIUM MANGANATE(VII) TITRATIONS:

When potassium manganate(VII) acts as an oxidizing agent in acidic solution, it is reduced to manganese(II) ions.

Potassium manganate(VII) is not sufficiently pure to be used as a primary standard and its solution must be standardized by titrating against a primary standard such as sodiumethanedioate.

# Questions.

- 1. A 25.0cm<sup>3</sup> portion of sodium ethanedioate solution of concentration 0.2moldm<sup>-3</sup> was acidified with dilute sulphuric acid. The mixture was heated up to 70°C and the hot mixture was titrated with potassium manganate(VII) solution and 17.20cm<sup>3</sup> was required to reach the endpoint.
  - (a) write an equation for the reaction
    - (b) Calculate the molarity of potassium manganate(VII) solution and hence determine the concentration of the solution in grams per litre.(answer = 0.116M)
  - 2. 8.492g of hydrated ammonium ferrous sulphte crystals ,  $(NH_4)_2SO_4.FeSO_4.nH_2O$  were dissolved in water and the solution made up to  $250cm^3$ .  $25.0cm^3$  of this solution was acidified with dilute sulphuric acid and required  $22.5cm^3$  of 0.015M potassium manganate(VII) solution. Calculate the value of n.(answer = 12))
- 3. A solution of hydrogen peroxide was diluted 20.0 times. A 25.0cm<sup>3</sup> portion of the diluted solution was acidified and required 45.7cm<sup>3</sup> of 0.015M potassium manganate(VII) solution.

#### Calculate the

- (a) concentration in moldm<sup>-3</sup> of the diluted solution (answer = 0.0684M)
- (b) volume strength of the original hydrogen peroxide solution. (answer = 15.4V))
- 4. A 25.0cm<sup>3</sup> portion of a solution containing iron(II) ions and iron(III) ions was acidified and required 15.0cm<sup>3</sup> of 0.02Mpotassium manganate(VII) solution. A second 25.0cm<sup>3</sup> portion of the mixture of iron(II) and iron(III) was reduced with excess zinc and 19.0cm<sup>3</sup> of 0.02M potassium manganate(VII) was required to reach the end point. Calculate the molar concentration of
  - (a) iron(II) ions and (answer = 0.060 moldm<sup>-3</sup>)
  - (b) iron(III) ions in the mixture.(answer = 0.0160moldm<sup>-3</sup>)

# POTASSIUM DICHROMATE TITRATIONS

Potassium dichromate(VI) can be obtained in a high state of purity, and its solution s are stable. It is used as a primary standard. Redox indicator is used in dichromate(VI) titrations and the colour change at the end point is from bluish green to violet. Redox indicator is made by dissolving 2.0g of barium N- phenyl phenyl amine- 4- sulphonate in 250cm<sup>3</sup> of concentrated phosphoric acid.

# **QUESTIONS**

- 1. 2.225g of an impure iron wire was dissolved in excess dilute sulphuric acid and the resultant solution was diluted to 250cm<sup>3</sup>. 25.0cm<sup>3</sup> of this solution required 31.0cm<sup>3</sup> of 0.0185M potassium dichromate(VI) solution using redox indicator.
  - (a) Write equations for the reactions that took place.
    - (b) Calculate the percentage of purity of the iron wire.

$$(answer = 86.7\%)$$

- 2. 1.90g of a metal sulphite,  $X_2SO_3$  was dissolve in distilled water and the solution made up to  $250cm^3$ .  $20.0cm^3$  of this solution required  $16.0cm^3$  of 0.02M potassium dichromate(VI) solution. Calculate the relative atomic mass of metal X and hence identify X.(answer = 39)
- 3. A solution of potassium dichromate was standardized by titrating with sodium ethanedioate solution. If 47.0cm³ of the dichromate solution was required to oxidize 25.0 cm³ of ethanedioate solution of concentration 0.0925moldm⁻³. Determine the molar concentration of potassium dichromate(VI) solution.(answer = 0.0164M)

### SODIUM THIOSULPHATE TITRATIONS

Sodium thiosulphate( $Na_2S_2O_3$ ) reduces iodine to iodide ions and thiosulphate ions themselves are oxidized to sodium tetrathionate ( $Na_2S_4O_6$ ).

$$2S_2O_3^{2-}(aq) + I_2(aq) \longrightarrow S_4O_6^{2-}(aq) + 2\Gamma(aq)$$

Sodium thiosulphate pentahydrate, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>. 5H<sub>2</sub>O is not used as a primarystandard because the it undergoes efflorescence and its solution turns cloudy on exposure to air due to the disproportionation reaction between the few hydrogen ions from carbonic acid formed and thiosulphate ions to form insoluble sulphur.

Therefore a solution sodium thiosulphate must be standardized using a standard solution of iodine. However iodine is sparingly soluble in water. It dissolves readily in potassium iodide solution because it forms a soluble complex ,tri-iodide ions with iodide ions.

$$I_2(s) + \overline{I}(aq) = I_3(aq)$$

An equilibrium is set up between iodine and tri-iodide ions and if iodine molecules are removed from the solution by a reaction, tri-iodide ions dissociate to form more iodine molecules. A solution of iodine in potassium iodide can be titrated as though it were a solution of iodine in water.

When sufficient amount of thiosulphate is added to a solution of iodine, the colour of iodine (brown) fades to a pale yellow. Then 2cm³ (or 6drops) of starch solution to act as indicator are added to give a deep blue colour with the iodine. Addition of thiosulphate is continued drop by drop, until the blue colour just turns colourless. Although in the reaction involving liberating iodine from iodide ions and acidified dichromate(VI) ions, chromium(III) ions are formed that give a pale blue solution at the end point.

Apart from preparing a standard solution of iodine from iodine crystals and potassium iodide, iodine can liberated from a redox reaction between an oxidizing agent and iodide ions in acidic medium. Such oxidizing agents include potassium dichromat(VI) ,K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> , potassium manganate(VII) , KMnO<sub>4</sub>, potassium chlorate(V), KClO<sub>3</sub>, potassium bromate(V) , KBrO<sub>3</sub>, potassium iodate(V), KIO<sub>3</sub> , sodium hypochlorite (sodium chlorate(I)) (JIK) , NaOCl or NaClO, copper(II) salt , hydrogen peroxide etc

$$Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6I^{-}(aq) \longrightarrow 2Cr^{3+}(aq) + 3I_{2}(aq) + 7H_{2}O(1)$$

$$2MnO_{4}^{-}(aq) + 16H^{+}(aq) + 10I^{-}(aq) \longrightarrow 2Mn^{2+}(aq) + 5I_{2}(aq) + 4H_{2}O(1)$$

$$YO_{3}^{-}(aq) + 6H^{+}(aq) + 6I^{-}(aq) \longrightarrow Y^{-}(aq) + 3I_{2}(aq) + 3H_{2}O(1)$$

$$Where Y = C1, Br)$$

$$IO_{3}^{-}(aq) + 6H^{+}(aq) + 5I^{-}(aq) \longrightarrow 3I_{2}(aq) + 3H_{2}O(1)$$

$$OCI^{-}(aq) + 2H^{+}(aq) + 2I^{-}(aq) \longrightarrow CI^{-}(aq) + I_{2}(aq) + H_{2}O(1)$$

$$2Cu^{2+}(aq) + 4I^{-}(aq) \longrightarrow Cu_{2}I_{2}(s) + I_{2}(aq)$$

$$H_{2}O_{2}(aq) + 2H^{+}(aq) + I^{-}(aq) \longrightarrow I_{2}(aq) + 2H_{2}O(1)$$

### **NOTE**

- 1. Among the oxidizing agents that oxidize iodide ions to iodine are primary standards and they include potassium dichromate(VI), potassium chlorate(V), potassium iodate(V), potassium bronmate(V)
- 2. When carry out calculation on redox, do not base your calculations on any of the following: potassium iodide, sulphuric acid, hydrochloric acid, ethanoic acid. Because these reagents are always in excess

### **QUESTIONS**

- 1. 2.855g of iodine and 6g of potassium iodide are dissolved in distilled water and the solution made up to 250cm<sup>3</sup>. A 25.0cm<sup>3</sup> portion of this solution required 17.7cm<sup>3</sup> of sodium thiosulphate using starch indicator. Calculate the molar concentration of sodium thiosulphate solution.
  - (answer = 0.126M)
- 2. 1.015g of potassium iodate(V) are dissolved in distilled water and the solution made up to 250cm<sup>3</sup>. To a 25.0cm<sup>3</sup> portion are added an excess of potassium iodide and dilute sulphuric acid. The liberated iodine required 29.8cm<sup>3</sup> of sodium thiosulphate solution. Calculate the concentration of sodium thiosulphate in moldm<sup>-3</sup> (answer= 0.0950moldm<sup>-3</sup>)
- 3. A domestic bleach in solution(JIK) is diluted by pipetting 10.cm<sup>3</sup> of the jik solution and making this volume up to 250cm<sup>3</sup>. A 25cm<sup>3</sup> portion of this solution is added excess potassium iodide solution and ethanoic acid and the liberated iodine required 21.3cm<sup>3</sup> of 0.0950M sodium thiosulphate solution. Calculate the percentage of available chlorine in JIK.

( density of the JiK solution =  $1 \text{gcm}^{-3}$ ) Equations involved include  $ClO^{-}(aq) + 2H^{+}(aq) + Cl^{-}(aq) \longrightarrow Cl_{2}(g) + H_{2}O(l)$   $ClO^{-}(aq) + 2I^{-}(aq) + 2H^{+}(aq) \longrightarrow I_{2}(aq) + Cl^{-}(aq) + H_{2}O(l)$   $2S_{2}O_{3}^{2-}(aq) + I_{2}(aq)$  $S_{4}O_{6}^{2-}(aq) + 2I^{-}(aq)$ 

### (answer = 7.2%)

- 4. A sample of 4.256g of hydrated copper(II) salt is dissolved in water and the solution made up to 250cm<sup>3</sup>. A 25.0cm<sup>3</sup> portion is added to an excess of potassium iodide solution. The iodine liberated required 18.0cm<sup>3</sup> of a 0.0950M sodium thiosulphate solution. Calculate the percentage of copper in the crystals.( Cu = 63.5) (answer = 25.6%)
- 5. A 25.0cm<sup>3</sup> sample of house hold bleach is diluted to 250cm<sup>3</sup>. A 25cm<sup>3</sup> portion of the solution is added to an excess of potassium iodide solution and ethanoic acid and titrated against 0.2M sodium thiosultate solution and 18.5cm<sup>3</sup> of sodium thiosulphate was required to reach the end point. Calculate molar concentration of sodium chlorate(I) in the bleach. (answer = 0.74M)
- 6.  $10\text{cm}^3$  of a solution of hydrogen peroxide is diluted with water to  $250\text{cm}^3$ .  $25\text{cm}^3$  of the sample reacted with excess potassium iodide in the presence of dilute sulphuric acid and required  $30\text{cm}^3$  of 0.2M sodium thiosulphate solution for complete reaction.
  - (a) Name the indicator used to make the end point and describe the colour change.
  - (b) Calculate
    - (i) Molarity of the original hydrogen peroxide
    - (ii) The volume strength of the original hydrogen peroxide.

## PRACTICAL QUESTIONS

## Your answers must be in the spaces provided.

1. You are provided with the following

**FA1** which is 0.05M sodium hydroxide solution

FA2 which is 0.02M potassium manganate(VII) solution

**FA3** which is a mixture of 2.9g of ethanedioic and metal oxalate  $(M_2C_2O_4)$  dissolve in 250cm<sup>3</sup> of solution.

You are required to determine the atomic mass of M in  $M_2C_2O_4$ 

### Procedure

- (a) Pipette 10cm<sup>3</sup> of **FA3** into a conical flask and add 2-3 drops of phenolphthalein indicator. Titrate the mixture with **FA1** from the burette until the end point.**DO NOT POUR AWAY** the resultant solution. Record your results in **table 1**
- (b) Add 20cm<sup>3</sup> of 2M sulphuric acid to the resultant solution in (a) and heat the mixture to nearly boiling and titrate the hot solution with **FA2** from the burette until the end point. Record your results in **table II.**
- (c) Repeat procedures (a) and (b) two more times to obtain consistent results.

Table 1

| Burette readings                           | 1     | 2     | 3     |
|--------------------------------------------|-------|-------|-------|
| Final burette reading (cm <sup>3</sup> )   | 22.80 | 44.80 | 27.00 |
| Initial burette reading (cm <sup>3</sup> ) | 0.00  | 22.80 | 5.00  |
| Volume of <b>FA1</b> (cm <sup>3</sup> )    |       |       |       |

### Table II

| Burette readings                           | 1     | 2     | 3     |
|--------------------------------------------|-------|-------|-------|
| Final burette reading (cm <sup>3</sup> )   | 20.90 | 39.90 | 29.00 |
| Initial burette reading (cm <sup>3</sup> ) | 0.00  | 20.90 | 10.00 |
| Volume of <b>FA2</b> (cm <sup>3</sup> )    |       |       |       |

| Titre | values                                  | used to calculate the average volume of <b>FA2</b> used          |
|-------|-----------------------------------------|------------------------------------------------------------------|
| Avera | age vo                                  | lume of <b>FA2</b> usedcm <sup>3</sup>                           |
| Ques  | tions                                   |                                                                  |
|       | (a)                                     | Calculate the number of moles of                                 |
|       |                                         | (i) ethanedioic acid in 10cm <sup>3</sup> of <b>FA3</b>          |
|       |                                         |                                                                  |
|       |                                         |                                                                  |
| ••••• | • • • • • • • •                         |                                                                  |
|       |                                         |                                                                  |
|       |                                         |                                                                  |
|       |                                         | (ii) metal ethanedioate in 10cm <sup>3</sup> of <b>FA3.</b>      |
|       |                                         |                                                                  |
|       | • • • • • • • •                         |                                                                  |
|       |                                         |                                                                  |
|       |                                         |                                                                  |
|       | (b)                                     | Determine the value of M in $M_2C_2O_4($ H= 1 , C = 12 , O = 16) |
|       |                                         |                                                                  |
|       | • • • • • • • •                         |                                                                  |
|       |                                         |                                                                  |
|       | • • • • • • • • • • • • • • • • • • • • |                                                                  |
|       |                                         |                                                                  |

|                                                                                             | • • • • • • • • • • • • • • • • • • • •                    |                   |                                        |  |  |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------|----------------------------------------|--|--|--|--|
| 2. You are provided with the                                                                | following                                                  |                   |                                        |  |  |  |  |
| FA1 which is a solution containing solution.                                                | ng 1.457g of ha                                            | late(V) ion, YO   | <sub>3</sub> -in 0.5dm <sup>3</sup> of |  |  |  |  |
| FA2 which is 0.027M sodium thi                                                              | osulphate solut                                            | ion.              |                                        |  |  |  |  |
| You are required t determine the                                                            | relative atomic                                            | mass of Yin the   | e halate(V) ion                        |  |  |  |  |
| Procedure:                                                                                  |                                                            |                   |                                        |  |  |  |  |
| Pipette 10cm <sup>3</sup> of FA1 into a coni                                                | cal flask and ad                                           | d an equal volu   | me of 1M                               |  |  |  |  |
| hydrochloric acid followed by 5.0cm <sup>3</sup> of 0.5M potassium iodide solution. Titrate |                                                            |                   |                                        |  |  |  |  |
| the mixture with FA2 from the bu                                                            | urette until the s                                         | solution turns pa | ale yellow. Add                        |  |  |  |  |
| 2cm <sup>3</sup> of starch solution and conti                                               | nue the titration                                          | until the soluti  | on just turns                          |  |  |  |  |
| colourless.                                                                                 |                                                            |                   |                                        |  |  |  |  |
| Volume of the pipette used                                                                  |                                                            |                   |                                        |  |  |  |  |
| Final burette reading (cm <sup>3</sup> )                                                    | Final burette reading (cm <sup>3</sup> ) 37.50 47.00 42.00 |                   |                                        |  |  |  |  |
| Initial burette reading(cm <sup>3</sup> )                                                   | 0.00                                                       | 10.00             | 5.00                                   |  |  |  |  |
| Volume of FA2 used(cm <sup>3</sup> )                                                        |                                                            |                   |                                        |  |  |  |  |
| Titre values used to calculate the average volume of FA2 used                               |                                                            |                   |                                        |  |  |  |  |
|                                                                                             |                                                            |                   |                                        |  |  |  |  |
| Average volume of $FA2 = \dots cm^3$                                                        |                                                            |                   |                                        |  |  |  |  |

| Ques | tions     |                                                  |
|------|-----------|--------------------------------------------------|
| Calc | ulate     |                                                  |
|      | (a)       | molar concentration of halate(V) ion             |
|      | • • • • • |                                                  |
|      | ••••      |                                                  |
|      | • • • • • |                                                  |
|      | ••••      |                                                  |
|      | • • • • • |                                                  |
|      | ••••      |                                                  |
|      | (b)       | the relative atomic mass of Y in YO <sub>3</sub> |
|      |           |                                                  |
|      |           |                                                  |
|      |           |                                                  |
|      |           |                                                  |
|      |           |                                                  |
|      |           |                                                  |
|      |           |                                                  |
|      |           |                                                  |
|      |           |                                                  |
|      |           |                                                  |
|      |           |                                                  |
| 3.   | You       | are provided with the following                  |
| FA1  | which     | is sodium thiosulphate solution                  |

**FA2** which is a solution made by dissolving 6.4g of a mixture of potassium iodate(V) and potassium iodide per litre of solution

Solid **P** which potassium dichromate

1M sulphuric acid

10% potassium iodide solution.

You are required to determine the

- (a) molar concentration
- (b) percentage of potassium iodate(V) in FA2

### Theory

Acidified dichromate(VI) ions react iodide ions according to the following equation.

$$Cr_2O_7^{-2}(aq) + 14H^+(aq) + 6\Gamma(aq) \longrightarrow 2Cr^{3+}(aq) + 3I_2(aq) + 7H_2O(1)$$

Acidified iodate(V) ions react with iodide ions according to the following equation

$$IO_3(aq) + 5I(aq) + 6H(aq) \longrightarrow 3I_2(aq) + 3H_2O(1)$$

The liberated iodine in both case is reduced by thiosulphate ions according to the following equation.

$$2S_2O_3^{2-}(aq) + I_2(aq) \longrightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$$

### **Procedure**

#### PART A

Weigh accurately about 1.2g of P and dissolve in about 100cm<sup>3</sup> of 1Msulphuric acid in a beaker. Transfer the solution in 250cm<sup>3</sup> volumetric flask and make up to the mark with distilled water. Shake to mix thoroughly and label the solution **FA3** 

Pipette 25cm<sup>3</sup> ( or 20 cm<sup>3</sup> ) of **FA3** into a conical flask and add 10cm<sup>3</sup> of potassium iodide solution and titrate the mixture with **FA1** from the burette until the solution

becomes yellowish green. Then add 2cm<sup>3</sup> of starch indicator and continue the titration until the solution just turns pale blue. Repeat the titration until you obtain consistent results. Record your results in the table below.

## **RESULTS**

| Mass of weighing bottle +P Mass of weighing bottle alone Mass of P Volume of the pipette used | =<br>=         | cm <sup>3</sup>                         | ·g              |  |  |
|-----------------------------------------------------------------------------------------------|----------------|-----------------------------------------|-----------------|--|--|
| Final burette reading (cm <sup>3</sup> )                                                      | 20.50          | 40.10                                   | 24.60           |  |  |
| Initial burette reading(cm <sup>3</sup> )                                                     | 0.00           | 20.50                                   | 5.00            |  |  |
| Volume of FA1 used(cm <sup>3</sup> )                                                          |                |                                         |                 |  |  |
| Titre values used to calculate the                                                            | ne average vol | lume of FA1use                          | ed              |  |  |
|                                                                                               |                |                                         | cm <sup>3</sup> |  |  |
| Average volume of FA1 =                                                                       |                |                                         | cm <sup>3</sup> |  |  |
| Questions                                                                                     |                |                                         |                 |  |  |
| Calculate molar concentration of <b>FA1</b>                                                   |                |                                         |                 |  |  |
|                                                                                               |                |                                         |                 |  |  |
|                                                                                               |                |                                         |                 |  |  |
|                                                                                               |                |                                         |                 |  |  |
|                                                                                               |                |                                         |                 |  |  |
|                                                                                               |                |                                         |                 |  |  |
|                                                                                               |                | • • • • • • • • • • • • • • • • • • • • |                 |  |  |
|                                                                                               |                | •••••                                   |                 |  |  |
|                                                                                               |                |                                         |                 |  |  |

|                                                                                                 | ••••••           |                 | • • • • • • • • • • • • • • • • • • • • |  |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------|-----------------|-----------------------------------------|--|--|--|--|
|                                                                                                 |                  |                 |                                         |  |  |  |  |
|                                                                                                 |                  |                 |                                         |  |  |  |  |
|                                                                                                 |                  |                 |                                         |  |  |  |  |
| PART B                                                                                          |                  |                 |                                         |  |  |  |  |
| Pipette 25cm <sup>3</sup> (or 20cm <sup>3</sup> ) of FA                                         | 2 into a conical | flask, add an e | qual volume of 1M                       |  |  |  |  |
| sulphuric acid and titrate with so                                                              | olution of FA1 f | rom the burette | until the solution                      |  |  |  |  |
| _                                                                                               |                  |                 |                                         |  |  |  |  |
| turns pale yellow. Add 2cm <sup>3</sup> of starchindicator and continue the titration until the |                  |                 |                                         |  |  |  |  |
| solution just turns colourless. Repeat the titration until you obtain consistent                |                  |                 |                                         |  |  |  |  |
| results. Record your results in the table below.                                                |                  |                 |                                         |  |  |  |  |
| RESULTS                                                                                         |                  |                 |                                         |  |  |  |  |
|                                                                                                 |                  | _               |                                         |  |  |  |  |
| Volume of the pipette used                                                                      | 20.0             | cm <sup>3</sup> |                                         |  |  |  |  |
| Final burette reading (cm <sup>3</sup> ) 7.50 13.50 19.50                                       |                  |                 |                                         |  |  |  |  |
| Initial burette reading(cm <sup>3</sup> )                                                       | 0.00             | 7.50            | 13.50                                   |  |  |  |  |
| _                                                                                               | 0.00             | 7.50            | 13.30                                   |  |  |  |  |
| Volume of FA1 used(cm <sup>3</sup> )                                                            |                  |                 |                                         |  |  |  |  |
| Titre values used to calculate the                                                              | e average volum  | e of FA1 used   |                                         |  |  |  |  |
|                                                                                                 |                  | cm              | 3                                       |  |  |  |  |

(a) Calculate

Questions

 $(i) \qquad \text{number of moles of potassium iodate}(V) \text{ that reacted with } \textbf{FA1}$ 

KCB ChemDept Page 17

| •••••                                   |                                                                                                                    |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                         |                                                                                                                    |
| (ii) p                                  | percentage by mass of potassium iodide that reacted.                                                               |
|                                         |                                                                                                                    |
|                                         |                                                                                                                    |
|                                         |                                                                                                                    |
| •••••                                   |                                                                                                                    |
|                                         |                                                                                                                    |
|                                         |                                                                                                                    |
| •••••                                   |                                                                                                                    |
| •••••                                   |                                                                                                                    |
| •••••                                   |                                                                                                                    |
| • • • • • • • • • • • • • • • • • • • • |                                                                                                                    |
| • • • • • • • • • • • • • • • • • • • • |                                                                                                                    |
| •••••                                   | ••••••                                                                                                             |
| •••••                                   | ••••••                                                                                                             |
| •••••                                   | •••••••••••••••••••••••••••••••••••••••                                                                            |
| •••••                                   |                                                                                                                    |
| You are provi                           | ded with the following:                                                                                            |
|                                         | a solution containing 4.0g of a mixture of potassium I) and potassium iodate(V) in 250cm <sup>3</sup> of solution. |
| FA2 which is                            | a 0.2M sodium thiosulphate solution.                                                                               |
| FA3 which is                            | a 0.1M iron(II) salt solution                                                                                      |
| 0.5M potassii                           | um iodide solution                                                                                                 |

4.0

1M phosphoric acid

You are required to determine the percentage by mass of potassium iodate(V) in **FA1.** 

#### **THEORY**

Both iodate(V) ions and dichromate(VI) ions react with iodide ions in acidic medium to liberate iodine which can be titrated against a standard solution of sodium thiosulphate according to the following equations

$$IO_3^-(aq) + 6H^+(aq) + 5I^-(aq)$$
  $\longrightarrow$   $3I_2(aq) + 3H_2(1)$   $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6I^-(aq)$   $\longrightarrow$   $2Cr^{3+}(aq) + 3I_2(aq) + 7H_2O(aq)$   $2S_2O_3^{23-}(aq) + I_2(aq)$   $\longrightarrow$   $S_4O_6^{2-}(aq) + 2I^-(aq)$ 

Iron(II) ions react with dichromat(VI) ions according to the following equation.

$$6Fe^{2+}(aq) + Cr_2 O_7^{2-}(aq) + 14H^+(aq) \longrightarrow 6Fe^{3+}(aq) + 2Cr^{3+}(aq) + 7H_2O(l)$$

### **PROCEDURE:**

#### PART 1

Pipette 10cm<sup>3</sup> of **FA1**into a clean conical flask, add 15cm<sup>3</sup> of 0.5M potassium iodide solution followed by 15cm<sup>3</sup> of 1M sulphuric acid .Titrate the mixture with **FA2** from the burette until the solution turns greenish yellow. Add 2cm<sup>3</sup> of starch indicator and continue the titration until the solution just turns pale blue. Repeat the titration until you obtain consistent results.

#### RESULTS

| Final burette reading (cm <sup>3</sup> )    | 20.50 | 40.10 | 30.10 |
|---------------------------------------------|-------|-------|-------|
| Initial burette reading(cm <sup>3</sup> )   | 0.00  | 20.50 | 10.50 |
| Volume of <b>FA2</b> used(cm <sup>3</sup> ) |       |       |       |

| Titre value | s used                                  | to calculate the average volume of <b>FA2</b> used                                                                               |
|-------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|             | • • • • • • •                           | cm <sup>3</sup>                                                                                                                  |
| Average vo  | olume                                   | of $\mathbf{FA2} = \dots $ |
|             |                                         |                                                                                                                                  |
| Questions   |                                         |                                                                                                                                  |
| (a)         | Calc                                    | culate                                                                                                                           |
|             | (i)                                     | number of moles of iodine that reacted with FA2                                                                                  |
|             | • • • • • • • • • • • • • • • • • • • • |                                                                                                                                  |
| ••••        | • • • • • • •                           |                                                                                                                                  |
| ••••        |                                         |                                                                                                                                  |
|             |                                         |                                                                                                                                  |
|             |                                         |                                                                                                                                  |
| (ii)        | total                                   | number of moles iodate(V) ions and dichromate(VI) ions in FA1                                                                    |
|             |                                         |                                                                                                                                  |
| ••••        | • • • • • • • •                         |                                                                                                                                  |
| ••••        | • • • • • • •                           |                                                                                                                                  |
|             |                                         |                                                                                                                                  |
| PAR         | RT 2                                    |                                                                                                                                  |

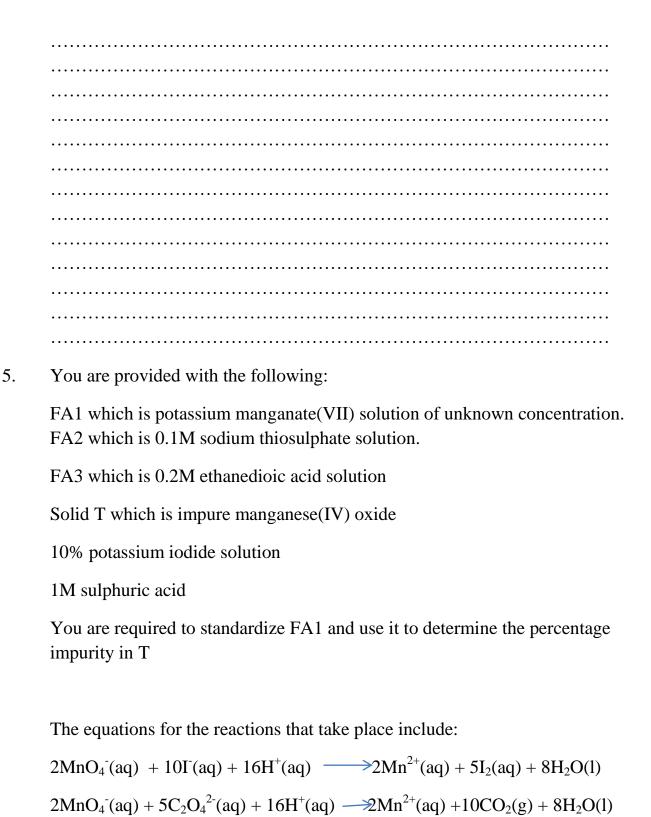
TAKI 2

Pipette 20cm³ of **FA3** into a clean conical flask , add 10cm³ of 1M phosphoric acid followed 15cm³ of 1M sulphuric acid . Add 2-3 drops of **REDOX** 

indicator  ${\bf R}$  and titrate the mixture with  ${\bf FA1}$  from the burette until the solution just turns violet. Repeat the titration until you obtain consistent results.

Record your results in the table below.

(ii)


## **RESULTS**

| Volume of the pipette used20 | 0.0cm <sup>3</sup> |
|------------------------------|--------------------|
|------------------------------|--------------------|

| Final burette reading (cm <sup>3</sup> )    | 14.50 | 27.80 | 41.10 |
|---------------------------------------------|-------|-------|-------|
| Initial burette reading(cm <sup>3</sup> )   | 0.00  | 14.50 | 27.80 |
| Volume of <b>FA1</b> used(cm <sup>3</sup> ) |       |       |       |

| Volum             | e of l | FA1 us | sed(cm <sup>3</sup> )                   | )             |         |                                         |                                         |                   |                                         |                 |
|-------------------|--------|--------|-----------------------------------------|---------------|---------|-----------------------------------------|-----------------------------------------|-------------------|-----------------------------------------|-----------------|
| Titre va          | alues  | used t | to calcul                               | ate the       | averag  | ge volum                                | e of <b>FA</b>                          | 1used             |                                         |                 |
| • • • • • • • • • |        |        |                                         |               |         | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • •                     | cm                | 3                                       |                 |
| Averag            | ge vol | lume o | of <b>FA1</b> =                         | =             |         | •••••                                   | • • • • • • • • • • • • • • • • • • • • |                   | cm <sup>3</sup>                         |                 |
| Questi            | ons    |        |                                         |               |         |                                         |                                         |                   |                                         |                 |
| (                 | (b)    | Calcu  | ılate the                               |               |         |                                         |                                         |                   |                                         |                 |
|                   |        | (i)    | numbe                                   | r of mo       | oles of | dichroma                                | ate(VI) i                               | ions that         | t reacted wit                           | th <b>FA</b> 1  |
|                   |        |        |                                         |               |         |                                         |                                         |                   | (03marks)                               |                 |
| •                 |        |        |                                         |               |         |                                         |                                         |                   |                                         |                 |
| •                 |        |        | • • • • • • • • • • • • • • • • • • • • | • • • • • • • |         | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                   | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • |
| •                 |        |        |                                         | • • • • • • • |         | •••••                                   | • • • • • • • • • • • • • • • • • • • • |                   | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • |
| •                 |        |        |                                         |               |         |                                         |                                         |                   |                                         |                 |
|                   |        |        |                                         | • • • • • • • |         | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • |                                         | •••••           |
| •                 |        |        |                                         |               |         | •••••                                   | • • • • • • • • • • • • • • • • • • • • |                   | • • • • • • • • • • • • • • • • • • • • |                 |

percentage by mass of potassium iodate(V) in FA1.(3½marks)



 $2S_2O_3^{2}(aq) + I_2(aq)$ 

 $MnO_2(s) + 4H^+(aq) + C_2O_4^{2-}(aq) \longrightarrow Mn^{2+}(aq) + 2CO_2(g) + 2H_2O(l)$ 

 $\longrightarrow$  S<sub>4</sub>O<sub>6</sub><sup>2</sup>-(aq) + 2I<sup>-</sup>(aq)

## **PROCEDURE**

### PART 1

Pipette 25.0cm³ (or 20cm³) of FA1into a conical flask, add 15cm³ of 10% potassium iodide followed by 15cm³ of 1M sulphuric acid. Titrate the mixture with FA2 from the burette until the solution turns pale yellow. Add 2cm³ of starch indicator and continue with the titration until the solution turns colourless.

| ındıc                                                                                                                                           | ator and continue with the ti                                              | tration until the | e solution turns (   | colourless. |   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------|----------------------|-------------|---|--|--|
|                                                                                                                                                 | RESULTS                                                                    |                   |                      |             |   |  |  |
| Volu                                                                                                                                            | me of the pipette used                                                     | 20.0              | cm <sup>3</sup>      |             |   |  |  |
| Final                                                                                                                                           | burette reading (cm <sup>3</sup> )                                         | 20.70             | 41.10                | 25.40       |   |  |  |
| Initia                                                                                                                                          | l burette reading (cm <sup>3</sup> )                                       | 0.00              | 20.70                | 5.00        |   |  |  |
| Volu                                                                                                                                            | me of <b>FA2</b> used (cm <sup>3</sup> )                                   |                   |                      |             |   |  |  |
| Titre                                                                                                                                           | values used to calculate the                                               | average volum     | e of <b>FA2</b> used |             |   |  |  |
|                                                                                                                                                 |                                                                            |                   | cm <sup>3</sup>      | 3           |   |  |  |
| Average volume of $\mathbf{FA2} = \dots $ |                                                                            |                   |                      |             |   |  |  |
| Ques                                                                                                                                            | stion                                                                      |                   |                      |             |   |  |  |
| (a)                                                                                                                                             | Calculate the molar concentration of potassium manganate (VII) solution in |                   |                      |             |   |  |  |
|                                                                                                                                                 | FA1                                                                        |                   |                      |             |   |  |  |
|                                                                                                                                                 |                                                                            |                   |                      |             |   |  |  |
|                                                                                                                                                 |                                                                            |                   |                      |             |   |  |  |
|                                                                                                                                                 |                                                                            |                   |                      |             | • |  |  |

### PART 2

Weigh accurately about 0.2g of  $\bf T$  in a conical flask and add  $100 {\rm cm}^3$  of  $\bf FA3$  and heat the mixture until the solid just dissolves. Cool the mixture and transfer into  $250 {\rm cm}^3$  volumetric flask and make up to the mark with distilled water. Shake to mix thoroughly and label the solution  $\bf FA4$ 

Pipette  $10.0 \text{cm}^3$  of **FA4** into a conical flask and add  $15 \text{cm}^3$  of 1M sulphuric acid. Heat the mixture up to  $70 ^{\circ}\text{C}$  and titrate the hot mixture with FA1 from the burette until the end point. Repeat the titration until you obtain consistent results. Record your results in the table below.

### **RESULTS**

| Mass of weighing bottle + <b>T</b> | =                             | g |
|------------------------------------|-------------------------------|---|
| Mass of weighing bottle alone      | =                             | g |
| Mass of T                          | =                             | g |
| Volume of the pipette used         | $10.0.\ldots$ cm <sup>3</sup> | 3 |

| Final burette reading (cm <sup>3</sup> )  | 14.70 | 28.60 | 42.50 |
|-------------------------------------------|-------|-------|-------|
| Initial burette reading(cm <sup>3</sup> ) | 0.00  | 14.70 | 28.60 |
| Volume of FA1 used(cm <sup>3</sup> )      |       |       |       |

|              |         | ` ,              |                   |                      |                                     |
|--------------|---------|------------------|-------------------|----------------------|-------------------------------------|
| Titre values | s used  | to calculate the | average volume    | e of <b>FA1</b> used |                                     |
|              |         |                  |                   | cm <sup>2</sup>      | 3                                   |
| Average vo   | olume o | of <b>FA1</b> =  |                   |                      | em <sup>3</sup>                     |
| Questions    |         |                  |                   |                      |                                     |
| (a)          | Calcu   | ılate the        |                   |                      |                                     |
|              | (i)     |                  | oles of excess et |                      | in 100cm <sup>3</sup> of <b>FA3</b> |
|              |         |                  |                   |                      |                                     |
|              |         |                  |                   |                      |                                     |

| •••••                                   | • • • • • • • • • • • • • • • • • • • • |                                         | •••••                                   | <br>                                        | •••••                                   |       |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|-------|
| •••••                                   | • • • • • • • • • • • • • • • • • • • • |                                         | •••••                                   | <br>                                        | •••••                                   |       |
|                                         |                                         |                                         | •••••                                   | <br>                                        |                                         |       |
|                                         | (ii)                                    |                                         | moles of eth                            |                                             |                                         |       |
| •••••                                   | • • • • • • • • • • • • • • • • • • • • |                                         | •••••                                   | <br>                                        |                                         |       |
|                                         |                                         |                                         |                                         | <br>                                        |                                         |       |
| (t                                      |                                         | rmine the per                           |                                         |                                             |                                         | ••••• |
|                                         |                                         |                                         |                                         | <br>                                        |                                         |       |
|                                         |                                         |                                         |                                         | <br>                                        |                                         |       |
| • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | <br>• • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |       |

**END**